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We investigate the selective forces that promote the emergence of modularity in nature. We demonstrate the
spontaneous emergence of modularity in a population of individuals that evolve in a changing environment. We
show that the level of modularity correlates with the rapidity and severity of environmental change. The
modularity arises as a synergistic response to the noise in the environment in the presence of horizontal gene
transfer. We suggest that the hierarchical structure observed in the natural world may be a broken symmetry
state, which generically results from evolution in a changing environment. To support our results, we analyze
experimental protein interaction data and show that protein interaction networks became increasingly modular
as evolution proceeded over the last four billion years. We also discuss a method to determine the divergence
time of a protein.
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I. INTRODUCTION

Modularity abounds in biology. Elements of hierarchy—
modules—are found in developmental biology, evolutionary
biology, and ecology �1–3�. Modularity is observed at levels
that span molecules, cells, tissues, organs, organisms, and
societies. At the genomic level, there are introns, exons,
chromosomes, and genes. Moreover, there are mechanisms
to rearrange and transmit the information that is modularly
encoded at the genomic level, such as gene duplication,
transposition, and horizontal gene transfer �4,5�. We define a
module to be a component that can operate relatively inde-
pendently of the rest of the system. From a structural per-
spective, existence of modularity means there are more in-
tramodule connections than intermodule connections. From a
functional perspective, a module is a unit that can perform
largely the same function in different contexts. Modularity
has been characterized in a variety of network systems by
physical methods �6,7�. Selection for stability, for example,
has been shown to select for modular networks �8�. A dictio-
nary of constituent parts, or network motifs, has been iden-
tified for the transcriptional regulation network of E. coli �9�.
And once modularity has arisen, so that the goals a species
face become modular, modularly varying goals have been
shown to select for modular structure �10�. Horizontal gene
transfer has been suggested to be essential to the evolution of
a universal genetic code �11�.

How does modularity arise in nature? It has been sug-
gested that by being modular, a system will tend to be both
more robust to perturbations and more evolvable �12–14�. It
has further been suggested that there is a selective pressure
for positive evolvability in a population of individuals in a
changing environment �15�. Thus, we have hypothesized that
modularity arises spontaneously from the generic require-
ment that a population of individuals in a changing environ-
ment be evolvable �16�. Support for this hypothesis had been
elusive �17�.

In this article, we extend the analysis presented in Ref.
�18�, as well as discuss experimental data. In Sec. II, we
introduce the spin glass model for the replication rate in evo-
lution. In Sec. III, we show spontaneous evolution of hierar-

chy in a system under changing environmental conditions
with horizontal gene transfer. Specifically, we show that in
the presence of horizontal gene transfer, environmental
change leads to the spontaneous emergence of modularity in
a generic model of a population of evolving individuals. The
model describes evolution in a rugged landscape, when the
environment is changing and when horizontal gene transfer
is possible. Modularity grows spontaneously even when the
horizontal gene transfer event is of a random length and
starting location. In Sec. IV, we discuss experimental evi-
dence in support of our simulation results. First we review
the evidence showing that the bacterial metabolic networks
in more variable environments are more modular. Next, we
show using a measure of protein divergence time that modu-
larity in protein interaction networks and protein domain in-
teraction networks appears to have increased with time. We
conclude in Sec V. Additional details are presented in appen-
dixes.

II. SPIN GLASS MODEL OF EVOLUTION

To represent the replication rate, or microscopic fitness, of
the individuals, we use a spin glass model that has proved
useful in previous studies of evolution �19–21�. The choice
of a spin glass model, with many local fitness optima, is
motivated by our assumption that evolution occurs on a rug-
ged landscape. In other words, our results pertain only to
those evolutionary processes that occur on such rugged fit-
ness landscapes. A spin glass model generically represents
such rugged fitness landscapes. We present illustrative results
for some numerical values of the parameters in the model.
The qualitative nature of our results are insensitive to the
specific values of these parameters. In this model, spontane-
ous emergence of modularity, however, generically occurs
for a population of evolving individuals and depends only on
the presence of a changing environment and the presence of
horizontal gene transfer. This spin glass model is appropriate
because it provides a rugged, difficult landscape upon which
evolution struggles to occur, and so there can be a pressure
for more efficient evolutionary structures to arise. This rug-
ged landscape of this model is expected to reproduce the
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slow dynamics of evolution �19,22–25�, and we have used
correlated random energy models in a number of protein
evolution �15,26� and immune system evolution studies
�20,21,27�. There are three time scales in our system: the
fastest time scale of sequence evolution of population as de-
scendants replace parents, the intermediate time scale of en-
vironmental change, and the longest time scale of the change
to the structure of interactions between elements of the se-
quence space. The symmetry of a uniformly random struc-
ture is broken by the spontaneous emergence of modular
structure as a response to environmental change.

We use the following spin glass form for the microscopic
fitness of proteins in our system �for a discussion on the spin
glass approach to evolution, see Refs. �15,20,21,27��:

H��s�,l� =
1

2�ND
�
i�j

�i,j�si
�,l,sj

�,l��i,j
� , �1�

where si
�,l, 1� i�N, is a string of length N that specifies the

identity of “individual” l. The term si
�,l may represent the

amino acid at position i within the sequence of a protein, the
label of a protein at gene i in the genome, or the type of
transcriptional regulatory element at noncoding position i.
For these three examples, the modularity that may develop
represents the formation of secondary structure, protein-
protein interaction motifs, or regulatory structure, respec-
tively. The different individuals are enumerated by l, with
1� l�Nsize, where we have Nsize different individuals. The
different possible forms of the structure of the interaction
between the si

�,l are enumerated by �, 1���Dsize, where
we choose Dsize possible structures. These structures of the
interaction represent, for example, the protein fold, protein
interaction pathways, or constraints on regulation. The term
�i,j�si ,sj�, is the numerical value of the interaction matrix,
symmetric in i and j, whose elements are each taken from a
Gaussian distribution with zero mean and unit variance. It
differs for each i, j, si, and sj. The effect of the environment
is encoded by these random couplings. When the environ-
ment changes with severity p, each of the couplings is with
probability p randomly redrawn from the Gaussian distribu-
tion. The term �i,j

� defines the structure of the interaction,
i.e., the contact matrix, or connections in structure, for struc-
ture �. The matrix is symmetric, with elements 0 or 1. In
order to guarantee that the emergence of modularity comes
from redistribution of connections rather than an increase in
the number of connections, we constrain �i�j+1�i,j

� =ND
=346. Any value of ND such that the connection matrix is
neither all unity nor all zero would give qualitatively similar
results. We take �i,i

� =0 and �i,i�1
� =1.

Horizontal gene transfer is assumed, for specificity, to
transfer any of the 12 blocks of length 10 in the sequence
�i.e., sequence elements 1,…,10; 11,…,20; 21,…,30; etc.�.
This horizontal gene transfer event represents transfer of
pieces of genes, collections of genes, or stretches of noncod-
ing regulatory information between individuals. Modularity
is defined, conjugate to the horizontal gene transfer event, to
be the number of connections within the 12 10�10 blocks
along the diagonal

M� = �
k=0

11

�
i=1,j=i+2

10

�10k+i,10k+j
� , �2�

so that i , j are within the �1+k�th diagonal block of size 10.
Even a random distribution of contacts will have a nonzero
absolute modularity M0 and so it is the excess modularity
that measures the degree of spontaneous symmetry breaking
	M�=M�−M0. Emergence of modularity means that as a
result of evolution, connections in structure are not evenly
distributed between positions. The interactions are greater in
the local, diagonal blocks than in the rest of the matrix, and
so 	M��0. In other words, 	M� is the order parameter of
spontaneous symmetry breaking of the approximately uni-
form distribution of contacts, and in the broken symmetry
phase, where the distribution of contacts is not uniform, and
	M��0.

In order to see the emergence of modularity, we need a set
of individuals in a changing environment. Moreover, since
we want to watch the evolution of the structural connections
�i,j

� , we need a population of these sets, each set with a
different �i,j

� . We take the population size to be Dsize=300
different structures, 1���Dsize, and each given structure
has a set of Nsize=1000 different sequences 1� l�Nsize as-
sociated with them. In total there are Dsize�Nsize=3�105

different individuals, replicating at the rate given by the mi-
croscopic fitness associated with its set �see Eq. �3�, below�.
The average excess modularity is given by 	M =M −M0

= 1
Dsize

��=1
DsizeM�−M0.

The structures �i,j
� are initialized by first randomly gener-

ating one such structure with ND=346 and a certain M. We
then obtain the full set of Dsize structures by evolution away
from this structure. Two elements of �i,j

� with opposite status
are randomly chosen, and the status of each is flipped from
1→0, 0→1. These mutations are done n times, where n is a
Poisson random number with mean 2. The sequences si

�,l,
1� i�N of each individual are initialized by random assign-
ment.

The evolution in our simulation involves three levels of
change. The most rapid change occurs by evolution of the
sequences through mutation and horizontal gene transfer.
The selection on this level is based on the microscopic fit-
ness. For each structure �i,j

� , at each round, all the Nsize as-
sociated sequences undergo mutation, horizontal gene trans-
fer, and selection. The Poisson mutation process changes on
average 2.4 values of the si

�,l in the sequence, which are
randomly selected and assigned a random new value. In hori-
zontal gene transfer, two randomly selected sequences from
the population associated with one structure attempt to ex-
change each of the 12 sequence fragments between 10k+1
and 10k+10 �of length 10� with probability 0.1. Thus, the
horizontal gene transfer rate and the mutation rate are
roughly equal �28�. The qualitative behavior of the results
does not depend on the exact mutation rates. All the se-
quences undergo attempted horizontal gene transfer to make
the new population. Pairs of sequences in the population as-
sociated with one structure are chosen, until all sequences
have been chosen. This process is a model of horizontal gene
transfer or recombination. The 50% sequences with the low-
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est energy are selected and randomly duplicated to recover
the population of Nsize for the next round; the microscopic
replication rate, or fitness, for sequence � , l in structure � is

r��s�,l� = 2
�HNsize/2
� − H��s�,l�� , �3�

where 
�x� is the Heavyside step function. Mutation and se-
lection are repeated T2 rounds.

The next most rapid change is that of the environment,
which occurs with severity p and frequency 1 /T2. That is,
the set of individuals evolve for T2 rounds in each given
environment, and then the environment changes. During the
environmental change, the elements of the interaction matrix
�i,j change with probability p.

The slowest level of change is the structural evolution.
The selection at this level is based on the cumulative fitness
of the set of individuals with a given structure, averaged over
T3=104T2 environmental changes. That is, we sum the aver-
age energy of the sequence set of each structure at the end of
each environment for T3 /T2 times and use this cumulative
fitness to determine the replication rate of the structures,
quantifying their performance in responding to environment
changes. The structures with the best 5% cumulative fitness
are selected and randomly amplified to make the new popu-
lation of Dsize structures �ij

�. The structure population also

undergoes mutation. As with the initial construction, two el-
ements of �i,j

� with opposite status are randomly chosen, and
the status of each is flipped from 1→0, 0→1. These muta-
tions are done n times, where n is a Poisson random number
with mean 2. The mutated structures �i,j

� are used for the next
T3 rounds of evolution.

III. SPONTANEOUS EMERGENCE OF MODULARITY

In Fig. 1, we show the spontaneous emergence of modu-
larity from the symmetric, random state of no excess modu-
larity M =M0=22. Since the system is initially quite far from
the steady state modularity, the growth of the excess modu-
larity with time is roughly linear. The excess modularity is
the order parameter for this system, and its growth shows
that the system is in a broken symmetry phase with modular
structure under these conditions. In Fig. 2, we show the en-
ergy decreases as modularity grows, i.e., the stability of the
structure is increasing. In Fig. 3, we show the change of
energy with time in more detail. Compared with Fig. 2, the
time scale �x axis� in Fig. 3 is much smaller �T3=2�105�.
The energy decreases during each constant environment. The
environment changes each t=20 steps. Immediately after the
change of environment, the individual sequences are not as
well adapted, and so the the energy increases sharply. As the
sequences adapt in the new environment, the average energy
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FIG. 1. Spontaneous emergence of excess modularity M �M0

=22 from a state with no excess modularity M =M0. The random,
symmetric distribution of structural connections is spontaneously
broken as the system evolves. Here T2=20, T3=104�T2, and the
severity of environmental change is p=0.40.
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FIG. 2. Improvement in the energy as time increases and as the
modularity grows, as shown by Fig. 1. Here the severity of envi-
ronmental change is p=0.4 and the period of change is T2=20.
Here, and in all figures, T3=104�T2.
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FIG. 3. Energy improvement as evolution proceeds within each
environment and large energy disruption due to environmental
changes. Here the severity of environmental change is p=0.4 and
the period of change is T2=20.
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FIG. 4. Improvement of evolvability or evolved improvement of
the energy in one environment as the modularity grows. Here the
severity of environmental change is p=0.4 and the period of change
is T2=20.
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of the population decreases. In Fig. 4, the response function,
or evolvability �E is shown as a function of time. By evolv-
ability, we mean the rate of change in a new environment
�15�. We observed the growth of evolvability as the modu-
larity grows in Figs. 5 and 4.

Interestingly, the growth of modularity is identical for an
initial contact matrix that is power-law distributed. Many
biological networks appear scale free, at least over a limited
range of connectivity �29�, with a power-law degree distri-
bution. Here, we choose the method of Barabási et al. �29� to
generate an initial contact matrix that is power-law distrib-
uted with �=3. In Fig. 5, we show the growth of modularity
that is nearly identical to that of Fig. 1.

The spontaneous emergence of modularity is a general
result. In Fig. 6, we show the excess modularity still grows,
even if the gene transfer starts at a uniformly random posi-
tion and swaps a random length of sequence. the original
assumption of fixed length and position, however, is biologi-
cally motivated. If we take the specific instance of the model
to indicate formation of secondary structures or protein-
protein interactions, then if the blocks are exons, and the
ratio of noncoding to coding DNA is large, then typical
recombination or horizontal gene transfer will transfer an

integer number of complete exons, which is our horizontal
gene transfer operator of fixed length and position.

When the environment does not change, or if there is no
horizontal gene transfer, the modularity does not spontane-
ously emerge. As shown in Fig. 7, the modularity remains
constant at M0 without environmental change or gene trans-
fer. The system adopts the broken-symmetry modular state
not because the mutation and horizontal gene transfer moves
favor modularity a priori, but rather because these moves
enable the system to respond more effectively to a changing
environment when the system is modular. That is, evolvabil-
ity is implicitly selected for in a changing environment, and
horizontal gene transfer enhances evolvability if the system
is modular. Thus, we expect modularity to be implicitly se-
lected for in a changing environment in the presence of hori-
zontal gene transfer, with the degree of modularity positively
correlated to the degree of environmental change. In Fig. 8
we show the change of modularity with time for different
severities of environmental change p. For this figure, we
choose the initial set of structures from an ensemble with
M =147, rather than M =M0, to show the change of modular-
ity more clearly. For no environmental change, the modular-
ity decreases from this high level. But for modest environ-

0 5 10 15 20
t / T3

20

24

28

32

36
M

p=0.40 T2=20

FIG. 5. Spontaneous emergence of excess modularity M �M0

=22 from an initial scale-free network ��=3� with M =M0. Here
T2=20, and the severity of environmental change is p=0.40.
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FIG. 6. Emergence of modularity as a result of a horizontal gene
transfer operator with a Poisson random swap length and uniform
random starting position. Shown are data for an average swap
length of 10 ���, 20 ���, 20 ���, 5 ���, and 40 ��� with 12, 6, 12,
24, and 3 attempted swaps, respectively, of probability 0.1 per se-
quence pair. Here T2=20, and the severity of environmental change
is p=0.40.
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FIG. 7. Emergence of modularity in this model requires both
horizontal gene transfer and a changing environment. Here T2=20.
For the case of no horizontal gene transfer with a changing envi-
ronment, the severity of environmental change is p=0.40. For the
case of no environmental change with horizontal gene transfer,
p=0, and the transfer is of fixed position 10k+1 and fixed length 10
and attempted every T2 steps.
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FIG. 8. The rate at which modularity grows dM /dt is positively
correlated with the magnitude of environment change p. The fre-
quency of environment change is set at 1 /T2=1 /40.
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mental change, the modularity increases from the initial,
high level. When the environment changes greatly, the sys-
tem must carry out more genetic change to survive, and it
evolves a greater increase of modularity. In Fig. 9,
dM /d�t /T3� is the rate of the increase of modularity, and we
show that the rate of the increase of modularity is larger for
greater environmental change.

Another way of characterizing the environmental change
is by the frequency of change, and the emergence of modu-
larity depends on this parameter as well. In Fig. 10 we show
the growth of modularity with time for different frequencies
of environmental change. For frequencies of environmental
change that are not too large, the modularity increases with
frequency. For very high frequencies 1 /T2�1 /5, the system
is unable to track the changes in the environment, and the
modularity decays with frequency. Figure 11 is the same as
Fig. 10 but with a real time as the x axis. We can see that the
increase of modularity is almost linear. The rate of modular-
ity increase in Fig. 10 for p=0.40 and T2=20 is less than that
in Fig. 1 because in Fig. 10 the system is closer to the steady-
state, broken-symmetry value than it is in the Fig. 1. In Fig.
12, we show that the rate of the increase of modularity is
larger for higher frequencies of environmental change.

The spontaneous emergence of modularity is caused
by the historical variation in environments that the system
has encountered. By a fluctuation-dissipation argument
�15,30,31�, we might expect that the degree of modularity

should be proportional to the variance of environments en-
countered. In Fig. 9 we show that the rate of the increase in
modularity is roughly proportional to the severity of environ-
mental change p. In Fig. 12 we show that the rate of the
increase in modularity is roughly proportional to the fre-
quency of environmental change 1 /T2.

While the modularity grows with time in Figs. 1, 8, and
10 for p�0 and T2�5, at steady state the system will be
only partially modular M �ND=346, reflecting a balance be-
tween the selection for modularity in a changing environ-
ment and the mutations driving the system toward the sym-
metric state of no excess modularity. To illustrate this point
of a finite modularity in the steady state, we show in Fig. 13
how the modularity changes from a starting point of nearly
total modularity M �ND, i.e., nearly all the connections in
the diagonal blocks and few in the off-diagonal blocks. We
observe that the modularity decays from the initial value, see
Fig. 13. The excess modularity in the broken symmetry state
is positive because of selection for modularity in fluctuating
environments, and the excess modularity is not the maximal
possible value of M =ND=346 because of the entropic effects
of the mutations in sequence space. For the initial condition
used in Fig. 13, nearly all the connections in the diagonal
blocks and few in the off-diagonal blocks, modularity decays
over time, showing the steady state value is below 316. The
modularity will saturate at a value for which the effects of
selection pressure and mutation balance each other.
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FIG. 9. The response function of the system dM /d�t /T3� as a
function of the severity of environmental change for the data of
Fig. 8.
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FIG. 10. Frequency of environmental change also affects the
time evolution of spontaneous modularity. Here 1 /T2 is the fre-
quency of environmental change and the severity of the environ-
mental change is p=0.40.
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FIG. 11. Frequency of environmental change affects the time
evolution of spontaneous modularity shown in real time t. Here
1 /T2 is the frequency of the environmental change and the severity
of the environmental change is p=0.40.
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FIG. 12. The response function of the system dM /d�t /105� as a
function of the frequency of environmental change �1 /T2� for the
data from Fig. 10.
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To summarize, we have observed the spontaneous evolu-
tion of modularity in a population evolving in a changing
environment. While we have described the model parameters
in terms of an evolving population of proteins, the model
generically represents evolution of individuals in a popula-
tion with a nontrivial microscopic fitness landscape. Modu-
larity arises spontaneously because evolvability is selected
for in a changing environment �15�, and modularity allows
the horizontal gene transfer to rapidly evolve the system in a
modified environment. Thus, modularity is selected for in a
changing environment, when the system has access to hori-
zontal gene transfer. The rate at which modularity grows
with time depends on the amplitude and frequency of envi-
ronment changes. More rapid environmental change tends to
promote the growth of modularity. A constant environment
promotes no emergence of modularity, as does the limit of an
extremely rapidly varying environment, because the system
sees only the average, constant environment. The growth of
modularity is also accelerated by more severe, larger-
amplitude environmental changes.

IV. DISCUSSION

In this section, we present some experimental evidence in
support of our simulation results. The biological results per-
tain to the specific instance of our model as describing the
formation of structure in the protein-protein interaction net-
work. Parter et al. �32� found that bacteria with habitats in
more variable environments have metabolic networks that
are significantly more modular than do bacteria with more
constant habitats. Kreimer et al. �33� found that bacteria in-
habiting a greater number of niches have more modular
metabolic networks, and that horizontal gene transfer con-
tributed to modularity. Singh et al. �34� found that stress
response networks such as chemotaxis that directly interact
with the environment are more modular than are stress re-
sponse networks more insulated from the impact of environ-
ment, such as competence for DNA uptake. After reviewing
these results, we investigate the evolution of protein interac-
tion network and protein domain interaction network in E.
coli and S. cerevisiae. We find that the modularity of both
networks in both organisms appears to have increased during
evolution.

A. Networks in variable environment are more modular

In our simulation, we predicted that environmental change
is a key factor of emergence of modularity �18�. Networks in
a severely changing environment are more modular.

Parter et al. constructed the metabolic network of 117
bacterial species �32�. They normalized the Newman modu-
larity to allow comparison of the modularity of networks
with different size and degree �32�, and they calculated the
modularity of all the 117 bacteria species. They evaluated the
variability of environment by classifying the 117 bacterial
species into six classes according to the degree of variability
of natural habitat. The six classes in the order of increasing
environmental change are obligate bacteria, specialized bac-
teria, aquatic bacteria, facultative bacteria, multiple bacteria,
and terrestrial bacteria. They averaged the modularity of bac-
terial species in each class, and found that networks in vari-
able environment are more modular than networks of species
which evolved in constant environment.

Kreimer et al. investigated metabolic networks across the
bacterial tree of life �33�. They systematically calculated the
Newman modularity for more than 300 bacterial species.
They found that bacteria occupying a limited number of
niches, such as endosymbionts and mammal-specific patho-
gens, have metabolic networks that are less modular that are
the metabolic networks from species occupying a grater va-
riety of niches. In particular, pathogens that alternate be-
tween hosts have more modular metabolic networks than do
single-host pathogens. Finally, the degree of horizontal gene
transfer was positively correlated with the modularity of
metabolic networks.

Since the emergence of modularity is promoted by envi-
ronmental change, it is very likely that networks which di-
rectly interact with environment are more modular than net-
works which are far from the impact of environment. Singh
et al. �34� reconstructed three regulatory networks underly-
ing stress response �chemotaxis, competence for DNA up-
take, and endospore formation� in hundreds of bacterial and
archaeal lineages. Chemotaxis is a canonical signal transduc-
tion pathway which directly interacts with environment;
sporulation is closely tied to essential replication apparatus
and is strongly affected by the environment. Environmental
change has great selection pressure on these two networks.
Conversely, competence for DNA uptake has wide phyletic
distribution and the impact of environment is limited. Singh
et al. reported that chemotaxis networks display well modu-
lar organization with five coherent modules whose distribu-
tion among different species shows great interdependence
and rewiring. The sporulation network is somewhat modular-
ity, and the chemotaxis network is even more modular. Con-
versely, competence for DNA uptake displays no modular
structure. These results clearly support the impact of envi-
ronmental change on the emergence of modularity of stress
response networks.

B. Modularity increases in protein networks
and protein domain networks

1. A definition of compositional age

To study modularity in biology, we need both a quantita-
tive definition of modularity and a calibration of time of
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FIG. 13. The spontaneous modularity saturates at a steady-state
level. If the initial value of the modularity is greater than the steady-
state value, the modularity decays with time. Here T2=20, and the
severity of environment change is p=0.40.
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divergence for the biological objects of interest. We here use
the compositional age approach to quantify the divergence
time of a protein �35�. In this method the order of appearance
of the amino acids over time is identified, and an integer
representing age of introduction assigned to each amino acid.
The order is given �35� as A /G=17, D /V=16, S=15, P
=14, E /L=13, T=12, R=11, I=10, Q=9, N=8, K=7, F=6,
H=5, C=4, M =3, Y =2, and W=1. The compositional age of
a protein is the average of these values over the sequence of
the protein. The compositional age of a species is the average
of the compositional age of all the expressed proteins in that
species. Proteins that contain a greater fraction of the oldest
amino acids are then identified as arising earlier than those
proteins that contain a greater fraction of the newer amino
acids. By averaging the compositional age of each of the
proteins in a species, we determine the average time of di-
vergence of that species. In this paper we make this method
quantitative, calibrating it upon time points over the last 3.5
billion years. This method does not require us to identify a
priori the ancient species.

To find the time of divergence of the earliest proteins, we
select nine bacteria, three archaea, and four eukaryotic or-
ganisms to find the conserved sequences presumed to have
arisen from the last universal common ancestor �LUCA�.
The bacterial species are A. aeolicus, T. maritima, D. radio-
durans, F. nucleatum, T. pallidum, C. glutamicum, C. aceto-
butylicum, S. aureus, and E. coli. The archaea species are A.
fulgidus, S. solfataricus, and P. aerophilum. The eukaryote
species are C. elegans, S. cerevisiae, S. pombe, and D. mela-

nogaster. All the sequence data come from EMBL-EBI. Us-
ing the software CONSERV �http://www.gen-info.osaka-
u.ac.jp/ngoto/CONSERV/� we found 2163 conserved
sequences with greater than 7 amino acids that appear in all
the three kingdoms and in at least 8 proteins. We calculated
the compositional age for these sequences. A histogram is
shown in Fig. 14�a�. The distribution of compositional age
peaks at 13.32. There is some debate about the age of LUCA,
with estimates ranging from 3.5 to 4.0 billion years ago �36�.
In our work, we set LUCA at the average of 3.8 billion years
ago. Thus, we assign a compositional age of 13.32 to a real
age of 3.8 billion years ago.

To find the divergence times of fungal proteins, we inves-
tigate ten species of fungi. In the group Dikarya/
Ascomycota/Saccharomycotina we choose S. cerevisiae, C.
glabrata, K. lactis, Y. lipolytica, and P. stipitis. In the group
Dikarya/Ascomycota/Pezizomycotina we choose N. crassa,
M. grisea, and A. fumigatus. We find 8535 sequences with
greater than 15 amino acids that appear in both branches and
in at least 4 proteins. The histogram of compositional age of
these sequences is shown in Fig. 14�b�. The compositional
age peaks at 12.1. We choose 1.1 billion years ago as the real
age of divergence time of these two branches of fungi �36�.
So, the compositional age of 12.1 corresponds to an age of
1.1 billion years ago.

To find the compositional age of recent proteins, we
search for the youngest proteins in E. coli. We consider only
proteins in the clusters of orthologous groups of proteins
�COG� database, to exclude those protein fragment without
function in the FASTA file. We compare the proteins in two
strains of E. coli: K12 and o157:H7 EDL 933. The 0157
strain of E. coli diverged from K12 strain about 4 million
years ago �37�. We take the strains of E. coli from the COG
database that exclude the orthologous proteins that are
shared by K12 and O157, which should be quite young,
probably less than 4 million years. The youngest new protein
of O157 has compositional age of 9.607. The youngest new
protein of K12 has a compositional age of 9.652. We, there-
fore, set the compositional age of present day as 9.6.

2. Compositional age and evolutionary rate

We want to find the relationship between the composi-
tional age of proteins and the evolutionary rate of corre-
sponding genes. The ratio of nonsynonymous substitution

(b)

(a)

FIG. 14. Distribution of conserved sequences with composi-
tional age to find �a� the age of LUCA and �b� the divergence time
of fungi.

FIG. 15. S. cerevisiae. The average dN /dS is negatively linearly
related to the compositional age.
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per site to synonymous substitution per site �dN /dS� is
often assumed to be a good measure of evolutionary rate.
Hirsh et al. compared the orthologous open reading frames
in four yeast spices and provided dN /dS data for 3392 genes
�38�. Here we average the dN /dS of proteins in every com-
positional age interval 0.2. For example, there are 326 pro-
teins with compositional age between 10.9 and 11.1, we cal-
culate the average dN /dS 0.21 for those proteins and plot it
in Fig. 15. The compositional age is negatively and nearly
linearly related to the evolutionary rate �correlation coeffi-
cient R2=0.83�.

3. Growth of modularity in the protein-protein
interaction network

We quantify modularity of both protein domain structure
and of the protein-protein interaction network �39–41�. The
protein-protein interaction network data come from DIP. We
obtain 1846 proteins with 6971 interaction edges in E. coli
and 3211 proteins with 17535 interaction edges in S. cerevi-
siae. The domain-domain interaction data come from INTER-

DOM. We consider only domain interactions based on the DIP
database and take only these domain interactions with a
score in the top 75%, to eliminate the noisy data. We obtain
276 proteins in E. coli and 427 proteins in S. cerevisiae, from
which we extract the protein domains for study. Interestingly,
the domain-domain interaction network is scale free with �
=2.4, see Fig. 16.

To quantify modularity in the interaction networks, we
construct the topological overlap matrix �42� from the inter-
action network, reorder it with the average linkage clustering
method �43�, and normalize the number of interactions
within modules according to network size. The topological
overlap matrix element Tij is the ratio of common nearest
neighbors of the interacting proteins i and j to their respec-
tive degrees. The topological overlap matrix reflects the to-
pological overlap of the nearest neighbors of two nodes. For
any two nodes i and j, the topological overlap is defined as
�42�

Tij =

�
u

aiuauj + aij

min�ki,kj� + 1 − aij
. �4�

Here aij is the elements of the interaction network matrix
with value 0 �not interacting� or 1 �interacting�. We use the
average-linkage hierarchical clustering algorithm �42� to re-
order the topological overlap matrix so that the more tightly
linked and clustered nodes are moved close to each other. In
this way, we identify the modules and hierarchical structure
of the network.

The reordered topological overlap matrix of E. coli at
different times is shown in Fig. 17. The protein-protein in-
teraction network evolves from an almost saturated, unstruc-
tured network in Fig. 17�a� to a mildly modular network with
four modules in Fig. 17�b� and then to a highly modular
network in Fig. 17�c�. To compare the modularity quantita-
tively, we define banded modularity as the ratio of interaction
within a diagonal band to the total interactions, normalized
by the ratio of the area of the band to the area of the matrix

FIG. 16. The degree distribution of the S. cerevisiae domain-
domain interaction network.

(b)(a)

(c) (d)

(f)(e)

FIG. 17. �Color online� The reordered topological overlap ma-
trix of the E. coli protein interaction network constructed from pro-
teins whose compositional age are larger than 12.8 �a�, 12.6 �b�, and
12.2 �c�. The color reflects the strength of the topological overlap of
two nodes �from 0.0 to 1.0�, as shown in the color bar in �a�. �d� The
linear relationship between compositional age and real age. �e�, �f�
The banded modularity evolution of E. coli and S. cerevisiae, re-
spectively. The lines of different color in �e� and �f� correspond to
different band sizes �W�. Modularity grows with time. Banded
modularity of a saturated matrix, i.e., a matrix with all elements
being 1 except the diagonal ones being 0, is shown in �e� and �f� for
comparison. The banded modularity of a saturated network is at its
minimum value of 1.
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Mbanded =

�
0��i−j��W

D

Tij

�
i�j

D

Tij

�	 �
0��i−j��W

D

1

�
i�j

D

1 

−1

. �5�

Here, W is the width of the band, D is the dimension of
matrix, and Tij is the element of reordered topological over-
lap matrix. Since the network size grows in time, we com-
pare modularity of network of different sizes. The factor
1 / ��0��i−j��W

D 1 /�i�j
D 1� normalizes for the network size. In

Fig. 17�e�, we show the banded modularity grows with com-
positional age in E. coli. A similar result is observed for S.
cerevisiae in Fig. 17�f�. This result holds true for different
band widths and different organisms; this phenomenon is
robustly observed. In a modular structure, there are more
interactions within a module than between modules. Banded
modularity is a concise definition of modularity, but may also
be interpreted as simply locality, in which true modules may
not be identifiable.

To measure modularity in a more detailed way, we search
along the diagonal of the reordered topological overlap ma-
trix to find the explicit modules, and we calculate the ratio of
interactions in the modules to the total interactions, normal-
ized by the ratio of the area of modules to the area of the
whole matrix. We define these modules quantitatively. First,
we suppose the protein i and i+1 form a module, and we ask
whether another another protein i+2, should be added to the
module. We add the protein if the average interaction be-
tween i+2 and the existing module is larger than a cutoff,
which we set it 0.2 in our study. We continue this procedure.
When we come to a protein with average interaction less
than the cutoff, this protein forms the first member of a new

module, and we begin the search to add further proteins to
this new module. The modules so identified depend on the
cutoff. In our study, the E. coli and S. cerevisiae networks are
highly modular. We tried several cutoff and found the results
are quite stable, with results in accord with our visual obser-
vation of the clustered matrix. We define the result as block
modularity

Mmodule =

�
j,k�j=1

�D

Tjk

�
j,k�j=1

D

Tjk

� 	 �
j,k�j=1

�D

1

D�D − 1�



−1

, �6�

where in the upper sum with the prime, k is over those pro-
teins in the same module as j and D is the dimension of the
matrix.

We apply this definition to the reordered topological over-
lap matrix to obtain the result for E. coli and S. cerevisiae in
Fig. 18. We see the growth of block modularity in both or-
ganisms. There is a positive correlation between banded and
block modularity. The growth of modularity is robust to the
precise definition of modularity. The average size of module
at different compositional age network is stable, see Fig.
19�a�. The relationship between the size of the network and
compositional age is shown in Fig. 19�b�. The average mod-
ule size does not change much in evolution, and the number
of proteins in each module in of S. cerevisiae is fewer than
that in E. coli, perhaps reflecting that S. cerevisiae is more
modular.

4. Growth of modularity in the domain-domain
interaction network

We observed modularity not only in the protein-protein
interaction network, but also in the domain-domain interac-
tion network. We show the result of the banded modularity of
the domain-domain interaction network of E. coli and S. cer-
evisiae in Fig. 20. The growth of banded modularity is pro-
nounced in both cases.

Our definitions of modularity allows the comparison of
modularity of matrices of different sizes. The saturated inter-
action matrix does not have any modular structure, regard-
less of the band size, as shown in Figs. 17�e� and 17�f�. A
network generated by randomly selected proteins in E. coli is
of constant low modularity �see Appendix B�, independent of
the number of proteins used. The network constructed based

(b)(a)

FIG. 18. �Color online� Evolution of block modularity of protein
interaction network in E. coli �a� and S. cerevisiae �b�.

(b)(a)

FIG. 19. �a� Average number of proteins in a module at different
compositional ages, �b� size of network in different compositional
age network.

(b)(a)

FIG. 20. �Color online� Evolution of banded modularity of
the domain-domain interaction network in E. coli �a� and S. cerevi-
siae �b�.
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on its compositional age, however, shows a clear growth of
its modularity. This result shows that the validity of organiz-
ing proteins by their compositional age.

We also measure modularity of the unweighted domain-
domain interaction network directly, without construction of
topological overlap matrix. We determine the fraction of a
protein to which other proteins interact. To the extent that
interactions become more localized within proteins, the pro-
tein is defined to be more modular. If protein B interacts with
protein A, and the interaction is with only a few of the do-
mains of protein A, then this interaction is more modular
than if protein B interacts with a greater number of the do-
mains of protein A. Averaging this measurement over all pro-
teins B, this procedure gives us a measure of the modularity
of protein A. So, we calculate the ratio of interacting do-
mains to the number of domains in a protein, which gives the
inverse of modularity. We define a “score,” which is the in-
verse of modularity, as

score:
1

2N
�
l=1

N � Il
A

Dl
ALB

2/3 +
Il

B

Dl
BLA

2/3� . �7�

Here l represents a protein-protein interaction or a link. To
distinguish the two proteins in a link, we mark one protein as
A, the other one as B. The number of links is N. The term LA
�LB� is the number of amino acids of protein A �B�. The
number of interacting domains is IA, and the number of total
domains is DA in protein A. We normalize the ratio of IA /DA
by the surface area of the target protein LB

2/3, and so the score
should measure only the modularity and normalize out the
size effect of target proteins.

In Fig. 21, we compare the scores of different domain-
domain interaction network at different compositional age.
The inverse of the score increases monotonically with evo-
lutionary progress. Because the inverse of the score is modu-
larity, we again observe that modularity has increased
through time. This observation is robust under different defi-
nitions of the score �see Appendix A�.

5. Summary

We have introduced several quantitative definitions of
modularity for interacting networks. We use them to measure
the modularity of the protein-protein interaction network and
domain-domain interaction network in S. cerevisiae and E.
coli. We have also introduced a method to quantify the evo-
lutionary divergence time of proteins. We consistently find

(b)(a)

FIG. 21. Domain interaction network modularity evolution in E.
coli �a� and S. cerevisiae �b�. The score is the inverse of modularity.

(b)(a)

(c) (d)

(f)(e)

(g) (h)

(j)(i)

(k) (l)

FIG. 22. Different definitions of inverse modularity, for E. coli
and S. cerevisiae.
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that modularity, by all definitions and in both organisms,
appears to have grown through time. This observation is in
agreement with the theory that environmental change
coupled with horizontal gene transfer naturally and inevita-
bly leads to evolution of increased modularity �18�. In this
sense, early life was a generalist, being less modular. As
evolution proceeded, and diversity of species increased and
the environment changed, proteins became more modular
and specialized in their interactions.

V. CONCLUSION

The model results were described at the individual level.
In particular, we have presented the dynamics as that of in-
dividual short protein sequences in a population. The spin
glass Hamiltonian, however, is a general description for the
replication rate in evolution. The spin glass Hamiltonian cap-
tures two basic features of evolution: evolution is relatively
slow, and there are many local fitness optima. Since the
Hamiltonian captures the generic, basic features of evolution,
we expect the emergence of modularity to be a generic, fun-
damental result.

Why is modularity so prevalent in the natural world? Our
hypothesis is that a changing environment selects for adapt-
able frameworks, and competition among different evolu-
tionary frameworks leads to selection of structures with the
most efficient dynamics, which are the modular ones. We
have provided experimental evidence supporting this hypoth-
esis. We suggest that the beautiful, intricate, and interrelated
structures observed in nature may be the generic result of
evolution in a changing environment. The existence of such
structure need not necessarily rest on intelligent design or the
anthropic principle.

It is now believed that large scale exchange of genetic
information is essential to increase the rate of evolution
�5,44,45�. Further experimental study of the relation between
large scale genetic exchange and the promotion of modular-
ity is warranted �3�. Some species of yeast may undergo
either sexual or asexual reproduction, and experiments sug-
gest that yeasts undergoing sexual reproduction are more
evolvable �46�. It would be interesting to construct protocols
to study the relation between sexual recombination and
modularity, possibly in gene expression networks �47� in
bacteria, in the laboratory. At an applied level, we note that

the process by which antibiotics resistance evolved �48�
makes use of the modular structure of the genes encoding the
enzymes that degrade and the pumps that excrete antibiotics
and the modular structure of the proteins to which antibiotics
bind �49�.

APPENDIX A: OTHER DEFINITIONS
OF DOMAIN MODULARITY

We consider several different definitions of a measure of
modularity in protein domain interactions:

score 1:
1

2N
�
l=1

N � Il
A

Dl
A +

Il
B

Dl
B� , �A1�

score 2:
1

N
�
l=1

N � Pl

Dl
ADl

B� , �A2�

score 3:
1

2N
�
l=1

N � Il
A

Dl
ALB

2/3 +
Il

B

Dl
BLA

2/3� , �A3�

score 4:
1

2N
�
l=1

N � Il
A

Dl
ALB +

Il
B

Dl
BLA� , �A4�

score 5:
1

N
�
l=1

N � Pl

Dl
ADl

BLl
ALl

B� , �A5�

score 6:
1

N
�
l=1

N � Pl

Dl
ADl

B�Ll
A�2/3�Ll

B�2/3� , �A6�

score 7:
1

M
�
l=1

N ��
j=1

DB Tj
A

Dl
A + �

j=1

DA Tj
B

Dl
B� . �A7�
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FIG. 23. �Color online� �a� A random network. �b� E. coli pro-
tein interaction network at compositional age 12.2.

FIG. 24. Comparison of banded modularity with width 8 be-
tween the E. coli network and the random network. The red line is
the banded modularity of random network. The black line is the E.
coli network with size 36 at compositional age 12.6, size 335 at
compositional age 12.2, and size 949 at compositional age 11.8.
Error bars are shown in blue.

SPONTANEOUS EMERGENCE OF MODULARITY IN A… PHYSICAL REVIEW E 79, 031907 �2009�

031907-11



In scores 1–6, l represents a protein-protein interaction link.
To distinguish the two proteins in each interaction link, we
mark one protein as A, and the other one B. The number of
protein-protein interaction links is N. The number of amino
acids of protein A �B� is LA �LB�. The number of total do-
mains of protein A is DA. The number of domain-domain
interaction links in the protein-protein interaction l is Pl.
Score measures the fraction of interacting domains to the
total domains. Score 2 measures the saturation of domain
interactions. Score 3 is refinement of score 1, excluding the
effect of protein size by normalizing with the surface area of
the substrate protein. Score 4 is another alternative, in which
the fraction of available contacts in the substrate is normal-
ized simply by the number of amino acids. Scores 5 and 6
are advanced versions of score 2, with normalizations for
size of substrate. In score 7, we average over domain num-
bers instead of protein numbers. That is, when A interacts
with B, B has DB domains; for the jth domain in protein B, it
can interact with Tj

A domains in protein A, and M =�l=1
N �DB

+DA�. Scores 1–7 are all measures of the inverse of modu-
larity. All of these scores show an increase of modularity
through time, see Fig. 22.

APPENDIX B: RANDOM NETWORKS
ARE NOT MODULAR

We select 352 proteins in E. coli at random and find the
interaction in DIP, then we construct the interaction network.
The result after clustering, for E. coli at compositional age
12.2, is shown in Fig. 23. The E. coli network shows hierar-
chical structure, while the random network has no hierarchi-
cal structure. The selection by compositional age elucidates
the nonrandom effects of evolution. We also use the random
network to test the quality of our definition of block modu-
larity. First, we calculate the degree of E. coli protein inter-
action network at different compositional ages, then, we con-
struct several random networks with the same size and
degree as the E. coli networks so constructed. We repeat this
procedure ten times for each point. We use the average link-
age hierarchical clustering method to calculate the block
modularity. We make a comparison with the E. coli network
selected based on compositional age in Fig. 24. The E. coli
networks are much more modular than are the random net-
works; the modularity of random networks is due only to
random fluctuations that are grouped by the hierarchical
clustering algorithm. The modules are visually apparent in
the clustered matrix, as in Fig. 23�b�.
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